Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Shan Gao, a* Jian-Rong Li, b Li-Hua Huo, a Ji-Wei Liu a and Chang-Sheng Gua

^aCollege of Chemistry and Chemical Technology, Heilongjiang University, Harbin 150080, People's Republic of China, and ^bDepartment of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: shangao67@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{C-C}) = 0.004 \text{ Å}$ R factor = 0.054 wR factor = 0.139Data-to-parameter ratio = 13.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetraaquabis(4-carboxyphenoxyacetato)magnesium(II)

The title complex, $[Mg(C_9H_7O_5)_2(H_2O)_4]$, is a neutral mononuclear molecule consisting of an Mg^{II} ion, two 4-carboxyphenoxyacetate ligands and four coordinated water molecules. The Mg^{II} atom lies on an inversion center and is sixcoordinate, with two O atoms of two *trans* 4-CPOAH $^-$ ligands and four water molecules. A supramolecular network structure is formed by intermolecular hydrogen bonds.

Received 21 November 2003 Accepted 15 December 2003 Online 19 December 2003

Comment

4-Carboxyphenoxyacetic acid (4-CPOAH₂), widely used in biological activity studies, is a flexible multidentate ligand, with versatile binding modes. Structures of the complexes of 4-CPOAH₂ have been reported for sodium (Wai *et al.*, 1990), nickel, manganese and cobalt (Kennard *et al.*, 1984). Recently, we isolated a new Mg^{II} complex, *viz.* Mg(4-CPOAH)₂(H₂O)₄, (I), from 4-CPOAH₂ and Mg(ClO₄)₂·6H₂O. We report here the crystal structure of this complex.

$$\begin{array}{c} O \\ H_2O \\ O \\ H_2O \\ OH_2 \end{array} \begin{array}{c} OH_2 \\ OH_2 \\ OH_2 \end{array}$$

As shown in Fig. 1, the title complex has a mononuclear structure, in which the 4-carboxyphenoxyacetate monoanions are bonded to the Mg^{II} atom in a monodentate fashion. The Mg^{II} atom is located on an inversion center and is coordinated by two O atoms of trans 4-CPOAH ligands and four water molecules, forming an octahedral coordination geometry. The Mg-O(oxyacetate) bond distance is 2.086 (2) Å, and the average Mg-O(H₂O) distance is 2.072 (2) Å. The cis bond angles at the Mg^{II} atom are close to 90°. The coordinated oxyacetate group and benzene ring are almost coplanar, with a C3-O3-C2-C1 torsion angle of 178.2 (2)°. A supramolecular framework is formed through intermolecular hydrogenbond interactions (Fig. 2). The uncoordinated carboxylic acid groups of adjacent molecules form O−H···O hydrogen bonds with each other, resulting in a one-dimensional chain (Table 2). These chains are linked by other hydrogen bonds (Table 2).

Figure 1 View of the title compound, with 30% probability displacement ellipsoids.

DOI: 10.1107/S1600536803028757

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

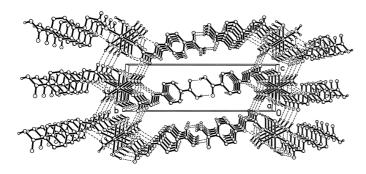


Figure 2
Hydrogen bonding in the crystal structure of (I).

Experimental

The title complex was prepared by the addition of a stoichiometric amount of $Mg(ClO_4)_2 \cdot 6H_2O$ (20 mmol) and NaOH (30 mmol) to a hot aqueous solution of 4-CPOAH₂ (20 mmol). The resulting solution was filtered, and colorless single crystals were obtained at room temperature over several days.

Crystal data

$[Mg(C_9H_7O_5)_2(H_2O)_4]$	Z = 1
$M_r = 486.67$	$D_x = 1.562 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 4.922 (1) Å	Cell parameters from 4564
b = 5.755 (1) Å	reflections
c = 18.432 (4) Å	$\theta = 3.3 – 27.6^{\circ}$
$\alpha = 94.13 (3)^{\circ}$	$\mu = 0.16 \text{ mm}^{-1}$
$\beta = 91.95 (3)^{\circ}$	T = 293 (2) K
$\gamma = 96.13 (3)^{\circ}$	Prism, colorless
$V = 517.3 (2) \text{ Å}^3$	$0.30 \times 0.28 \times 0.26 \mathrm{mm}$

Data collection

2244 independent neffections
2244 independent reflections
1609 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.034$
$\theta_{\rm max} = 27.5^{\circ}$
$h = -6 \rightarrow 6$
$k = -7 \rightarrow 7$
$l = -23 \rightarrow 23$

Refinement

refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0717P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.054$	+ 0.1746 <i>P</i>]
$WR(F^2) = 0.139$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\text{max}} < 0.001$
2244 reflections	$\Delta \rho_{\text{max}} = 0.34 \text{ e Å}^{-3}$
167 parameters	$\Delta \rho_{\text{min}} = -0.24 \text{ e Å}^{-3}$
H atoms treated by a mixture of	$\Delta p_{\min} = 0.21211$
independent and constrained	

Table 1 Selected geometric parameters (\mathring{A}, \circ) .

Mg1-O2W Mg1-O1	2.042 (2) 2.086 (2)	Mg1-O1W	2.101 (2)
$O2W^{i}-Mg1-O1$ O2W-Mg1-O1 $O2W-Mg1-O1W^{i}$ $O1-Mg1-O1W^{i}$	89.31 (7) 90.69 (7) 90.35 (8) 88.90 (7)	O2W-Mg1-O1W O1-Mg1-O1W C3-O3-C2	89.65 (8) 91.10 (7) 118.3 (2)

Symmetry code: (i) 1 - x, 1 - y, -z.

Table 2 Hydrogen-bonding geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
O1 <i>W</i> −H1 <i>WB</i> ···O3 ⁱⁱ	0.812 (19)	2.26 (2)	3.001 (3)	151 (4)
$O1W-H1WB\cdots O1^{ii}$	0.812 (19)	2.27 (3)	2.924 (3)	138 (4)
$O1W-H1WA\cdots O2^{iii}$	0.828 (19)	1.94(2)	2.748 (3)	166 (4)
$O2W-H2WB\cdots O2$	0.829 (18)	1.90(2)	2.704(2)	164 (4)
$O2W-H2WA\cdots O1W^{iv}$	0.817 (18)	2.17(3)	2.888 (3)	147 (4)
$O5-H12\cdots O4^{v}$	0.82	1.80	2.612 (2)	169
Symmetry codes: (ii)	1 ± v v z: (iii)	v v 1 m	(iv) 2 v 1	5: (v)

Symmetry codes: (ii) 1+x, y, z; (iii) x, y-1, z; (iv) 2-x, 1-y, -z; (v) -2-x, 1-y, 1-z.

The H atoms were placed in calculated positions, with C–H = 0.93–0.97 Å, O–H = 0.82 Å and $U_{\rm iso}({\rm H})$ = 1.2 $U_{\rm eq}$ (parent atom), and refined as riding, except for the water molecules, for which the H atoms were located in difference Fourier maps and refined isotropically.

Data collection: *RAPID-AUTO* (Rigaku Corporation, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997; program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXL97*.

The work was supported by the National Natural Science Foundation (No. 20101003) and Heilongjiang province Natural Science Foundation (No. B0007).

References

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Kennard, C. H. L., Smith, G. & O'Reilly, E. J. (1984). Inorg. Chim. Acta, 82,

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). *CrystalStructure*. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Wai, H. Y., Ru, J. W. & Mak, T. C. W. (1990). J. Crystallogr. Spectrosc. Res. 20, 307–312.